$L^2$-determinant class and approximation of $L^2$-Betti numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrality of L2-Betti numbers

The Atiyah conjecture predicts that the L-Betti numbers of a finite CW -complex with torsion-free fundamental group are integers. We establish the Atiyah conjecture, under the condition that it holds for G and that H G is a normal subgroup, for amalgamated free products G ∗H (H ⋊ F ). Here F is a free group and H ⋊ F is an arbitrary semi-direct product. This includes free products G∗F and semi-...

متن کامل

L2-betti Numbers of Discrete Measured Groupoids

There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II 1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition...

متن کامل

L-determinant class and approximation of L-Betti numbers

A standing conjecture in L-cohomology is that every finite CW complex X is of L-determinant class. In this paper, we prove this whenever the fundamental group belongs to a large class G of groups containing e.g. all extensions of residually finite groups with amenable quotients, all residually amenable groups and free products of these. If, in addition, X is L-acyclic, we also prove that the L-...

متن کامل

Volume and L2-Betti numbers of aspherical manifolds

We give a leisurely account of the relationship between volume and L2-Betti numbers on closed, aspherical manifolds based on the results in [4] – albeit with a different point of view. This paper grew out of a talk presented at the first colloquium of the Courant Center in Göttingen in October 2007. 1. Review of L2-Betti numbers The L2-Betti numbers of a closed Riemannian manifold, as introduce...

متن کامل

On the Definition of L2-Betti Numbers of Equivalence Relations

We show that the L-Betti numbers of equivalence relations defined by R. Sauer coincide with those defined by D. Gaboriau.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2001

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-01-02699-x